Example using multiple predicates

//performance [conductor] [date]

XML Data Management

(c)
7% 9

162/ 366

Further examples with predicates

@ //performance [composer=’Frederic Chopin’]/composition

returns
Q <composition>Waltzes</composition>
Q <composition>Piano Concerto No. 1</composition>

Peter Wood (BBK) XML Data Management 163/ 366

Further examples with predicates

@ //performance [composer=’Frederic Chopin’]/composition

returns

Q <composition>Waltzes</composition>

Q <composition>Piano Concerto No. 1</composition>
@ //CD[@number="449719-2"1//composition returns

Q <composition>Piano Concerto No. 1</composition>

Q <composition>Piano Concerto No. 1</composition>

The two composition nodes have the same value, but they are
different nodes

Peter Wood (BBK) XML Data Management 163/ 366

Functions

@ XPath provides many functions that may be useful in predicates
@ Each XPath function takes as input or returns one of these four
types:

» node set
» string

» Boolean
» number

Peter Wood (BBK) XML Data Management 164 / 366

More about Context

@ Each location step and predicate is evaluated with respect to a
given context
@ A specific context is defined as ((Ny, Na, ... Nm), N¢) with
» a context list (Ny, No, ... Np) of nodes in the tree
» a context node N; belonging to the list
@ The context length m is the size of the context list

@ The context node position ¢ € [1, m] gives the position of the
context node in the list

Peter Wood (BBK) XML Data Management 165/ 366

More about XPath Evaluation

@ Each step s; is interpreted with respect to a context; its result is a
node list

@ A step s; is evaluated with respect to the context of step s;_+4
@ More precisely:
» for i =1 (first step)
if the path is absolute, the context is the root of the XML tree;
else (relative paths) the context is defined by the environment;
» Fori>1
if V= (Ni,Na, ... Npy) is the result of step s;_1,
step s; is successively evaluated with respect to the context (N, N;),
foreachje [1,m]
@ The result of the path expression is the node list obtained after
evaluating the last step

Peter Wood (BBK) XML Data Management 166 / 366

Node-set Functions

@ Node-set functions operate on or return information about node
sets

@ Examples:
» position(): returns a number equal to the position of the current
node in the context list
* [position()=i] can be abbreviated as [il]
» last(): returns the size (i.e. the number of nodes in) the context list
» count(set): returns the size of the argument node set

» id(): returns a node set containing all elements in the document
with any of the specified IDs

Peter Wood (BBK) XML Data Management 167 / 366

Example about context

@ The expression //CD/performance [2] returns the second
performance of each CD, not the second of all performances

@ The result of the step CD is the list of the 4 CD nodes

@ The step performance[2] is evaluated once for each of 4 CD
nodes in the context

Peter Wood (BBK) XML Data Management

168 / 366

Example about context (2)

@ The result is the list comprising the second performance element

child of each CD:

Q <performance>
<composition>Fantasias Op. 116</composition>
<date>1976</date>
</performance>
Q <performance>
<composer>Franz Liszt</composer>
<composition>Piano Concerto No. 1</composition>
</performance>
© <performance>
<composition>American Suite</composition>
<orchestra>Royal Philharmonic</orchestra>
<conductor>Antal Dorati</conductor>
<date>1984</date>
</performance>

Peter Wood (BBK) XML Data Management

169 / 366

Problems with XPath processors

@ Say we want those performance children of CD elements that are
both the second performance and have a date
@ The the following 4 expressions should all be equivalent

» //CD/performance[2] [date]
» //CD/performance[date] [2]
» //CD/performance[date and position()=2]
» //CD/performance[position()=2 and datel

@ But different processors give different results!

Peter Wood (BBK) XML Data Management 170/ 366

Problems with XPath processors

@ Say we want those performance children of CD elements that are
both the second performance and have a date
@ The the following 4 expressions should all be equivalent

» //CD/performance[2] [date]
» //CD/performance[date] [2]
» //CD/performance[date and position()=2]
» //CD/performance[position()=2 and datel

@ But different processors give different results!

@ Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions

Peter Wood (BBK) XML Data Management 170/ 366

Problems with XPath processors

@ Say we want those performance children of CD elements that are
both the second performance and have a date
@ The the following 4 expressions should all be equivalent

» //CD/performance[2] [date]
» //CD/performance[date] [2]
» //CD/performance[date and position()=2]
» //CD/performance[position()=2 and datel

@ But different processors give different results!

@ Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions

@ But, for //CD/performance [date] [2], eXist seems to return the
second of all performance elements with a date

Peter Wood (BBK) XML Data Management 170/ 366

Problems with XPath processors

@ Say we want those performance children of CD elements that are
both the second performance and have a date
@ The the following 4 expressions should all be equivalent

» //CD/performance[2] [date]
» //CD/performance[date] [2]
» //CD/performance[date and position()=2]
» //CD/performance[position()=2 and datel

@ But different processors give different results!

@ Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions

@ But, for //CD/performance [date] [2], eXist seems to return the
second of all performance elements with a date

@ An eatrlier tool returned, for each €D, the second of its
performance elements that had a date (if any)

Peter Wood (BBK) XML Data Management 170/ 366

More about the position() function

@ position() is a function that returns the position of the current
node in the context node set

@ For most axes it counts forward from the context node

@ For the “backward” axes it counts backwards from the context
node

@ The “backward” axes are: ancestor, ancestor-or-self, preceding,
and preceding-sibling

Peter Wood (BBK) XML Data Management 171/ 366

Examples using position()

@ So, to get the CD immediately before the one that was composed
by Dvorak:
//CD[composer="Antonin Dvorak’]/preceding::CD[1]

@ This selects the third CD

@ To get the last CD (without having to know how many there are),
use //CD[position()=last ()]

Peter Wood (BBK) XML Data Management 172/ 366

Example using a different axis

@ //date/following-sibling: :* returns the following:
Q <performance>
<composer>Frederic Chopin</composer>
<composition>Piano Concerto No. 1</composition>
</performance>
Q <performance>
<composer>Franz Liszt</composer>
<composition>Piano Concerto No. 1</composition>
</performance>

@ only one date element in the document has any following siblings

Peter Wood (BBK) XML Data Management 173 /366

Examples using count

@ //CD[count (performance)=2] returns CD elements with exactly
two performance elements as children: the last 3 CDs

Peter Wood (BBK) XML Data Management 174/ 366

Examples using count

@ //CD[count (performance)=2] returns CD elements with exactly
two performance elements as children: the last 3 CDs
@ //CD[performance] [performance] of course does not do this:

» it is equivalent to //CD [performance]
» which returns CD elements with at least one performance child

Peter Wood (BBK) XML Data Management 174/ 366

More examples using count

@ Assume we want the CDs containing only one orchestra element

@ //CD[count (orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”

@ This is because we are counting the orchestra children of CD
elements

@ But orchestras are also represented below performance elements

Peter Wood (BBK) XML Data Management 175/ 366

More examples using count

@ Assume we want the CDs containing only one orchestra element
@ //CD[count (orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”

@ This is because we are counting the orchestra children of CD
elements

@ But orchestras are also represented below performance elements

@ What about //CD[count (//orchestra)=1]7

» But //orchestra is an absolute expression evaluated at the root
» So the answer to count (//orchestra)is 4, not 1

Peter Wood (BBK) XML Data Management 175/ 366

More examples using count

@ Assume we want the CDs containing only one orchestra element
@ //CD[count (orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”

@ This is because we are counting the orchestra children of CD
elements

@ But orchestras are also represented below performance elements

@ What about //CD[count (//orchestra)=1]7
» But //orchestra is an absolute expression evaluated at the root
» So the answer to count (//orchestra)is 4, not 1
@ What we need is /CD[count (.//orchestra)=1], where “.”
represents the current context node

» This gives us the CDs with the “Berlin Philharmonic” and “London
Symphony Orchestra”

Peter Wood (BBK) XML Data Management 175/ 366

String Functions

@ String functions include basic string operations
@ Examples:

» string-length(): returns the length of a string

» concat (): concatenates its arguments in order from left to right and
returns the combined string

» contains(s7, s2): returns true if s2is a substring of s7

» normalize-space(): strips all leading and trailing whitespace from
its argument

Peter Wood (BBK) XML Data Management 176 / 366

Boolean Functions

@ Boolean functions always return a Boolean with the value true or
false:

» true(): simply returns true (makes up for the lack of Boolean
literals in XPath)

» false(): returns false

» not(): inverts its argument (i.e., true becomes false and vice versa)

Peter Wood (BBK) XML Data Management 177 / 366

Boolean Functions

@ Boolean functions always return a Boolean with the value true or
false:

» true(): simply returns true (makes up for the lack of Boolean
literals in XPath)

» false(): returns false

» not(): inverts its argument (i.e., true becomes false and vice versa)

@ Examples:

» //performance [orchestra] [not (conductor)] returns
performance elements which have an orchestra child but no
conductor child

» //CD[not(.//soloist)] returns CDs containing no soloists

Peter Wood (BBK) XML Data Management 177 / 366

Boolean Functions (2)

@ boolean(): converts its argument to a Boolean and returns the
result

» Numbers are false if they are zero or NaN (not a number)
» Node sets are false if they are empty
» Strings are false if they have zero length

Peter Wood (BBK) XML Data Management 178/ 366

Number Functions

@ Number functions include a few simple numeric functions
@ Examples:

» sum(set): converts each node in a node set to a number and
returns the sum of these numbers
» round(), floor(), ceiling(): round numbers to integer values

Peter Wood (BBK) XML Data Management 179/ 366

Summary

@ XPath is used to navigate through elements and attributes in an
XML document

@ XPath is a major element in many W3C standards: XQuery, XSLT,
XLink, XPointer

@ ltis also used to navigate XML trees represented in Java or
JavaScript, e.g.

@ So an understanding of XPath is fundamental to much advanced
XML usage

Peter Wood (BBK) XML Data Management 180/ 366

Optimising XPath Queries

Chapter 7

Optimising XPath Queries

XML Data Management 181/366

Types of Optimisation

@ In general, there are two types of query optimisation:
» logical optimisation
» physical optimisation
@ Logical optimisation is concerned with, e.g., rewriting a given
query to be minimal in size (i.e., to remove redundant parts)

@ Physical optimisation refers to strategies to make query evaluation
as efficient as possible

@ In this chapter, we will study some aspects of logical optimisation
for XPath

@ Later chapters will discuss physical optimisation

Peter Wood (BBK) XML Data Management 182/ 366

XPath Fragment

@ We will consider only a fragment of XPath
@ Each location step is just

» the name of an element, or
> x, Or
» empty (giving rise to //)

optionally followed by predicates

Peter Wood (BBK) XML Data Management

183/ 366

Optimising XPath Queries

<bookstore>

<book>
<author><last-name>Abiteboul</last-name></author>
<author><last-name>Hull</last-name></author>
<author><last-name>Vianu</last-name></author>
<title>Foundations of Databases</title>
<isbn>0-201-53771-0</isbn>
<price>26.95</price>

</book>

<magazine>
<title>The Economist</title>
<date><day>26</day><month>June</month><year>1999</year></date>
<price>2.50</price>

</magazine>

<book>
<isbn>0-934613-40-0</isbn>
<price>34.95</price>

</book>

</bookstore>

Peter Wood (BBK) XML Data Management 184/ 366

Some Queries on bookstore

On this specific document
@ /bookstore/book/isbn gives the same result as //isbn

» because every isbn is a child of book and every book is a child of
bookstore

@ /bookstore/*/title gives the same result as
/bookstore/ (book Imagazine) /title and //title

» because the only elements that can be children of bookstore and
parents of title are either book or magazine

@ //magazine[date[day] [month]]/title gives the same result as
//magazine [date/day] [date/month] /title

» because each magazine has only a single date

Peter Wood (BBK) XML Data Management 185/ 366

Some Queries on bookstore

On this specific document
@ /bookstore/book/isbn gives the same result as //isbn

» because every isbn is a child of book and every book is a child of
bookstore

@ /bookstore/*/title gives the same result as
/bookstore/ (book Imagazine) /title and //title

» because the only elements that can be children of bookstore and
parents of title are either book or magazine

@ //magazine[date[day] [month]]/title gives the same result as
//magazine [date/day] [date/month] /title

» because each magazine has only a single date

But these queries are not equivalent in general

Peter Wood (BBK) XML Data Management 185/ 366

XPath Queries as Tree Patterns

@ We can view an XPath query Q in our fragment as a tree pattern P
@ Each node test (element name or *) in Q becomes a node in P

@ If Q has subexpression A/B, then nodes A and B in P are
connected by a single edge

@ If Q has subexpression A//B, then nodes A and B in P are
connected by a double edge

@ The node in P corresponding to the element name forming the
output of Q is shown in boldface

Peter Wood (BBK) XML Data Management 186/ 366

Tree Pattern Example

/bookstore//*[date/day] [date/month]/title

bookstore
date date title
day month

Peter Wood (BBK) XML Data Management

187/ 366

Containment and Equivalence of XPath Queries

@ Given an XPath query Q and an XML tree t, the answer of
evaluating Q on t is denoted by Q(t)
@ For XPath queries P and Q, we say
» P contains Q, written P D Q, if for all trees t, P(t) 2 Q(t)
» Pis equivalent to Q, written P=Q,if P> Qand Q D P
@ Containment of XPath queries is useful

» to show equivalence of queries for optimization
» to determine if views can be used in query processing
» to reuse cached query results

Peter Wood (BBK) XML Data Management 188/ 366

Examples of Containment and Equivalence
@ //isbn DO /bookstore/book/isbn

» There are no fewer isbns than isbns of books

Peter Wood (BBK)

XML Data Management

Examples of Containment and Equivalence
@ //isbn DO /bookstore/book/isbn
» There are no fewer isbns than isbns of books

@ /bookstore/*/title O /bookstore/book/title
» There are no fewer title that titles of books

Peter Wood (BBK) XML Data Management

189/ 366

Examples of Containment and Equivalence

@ //isbn DO /bookstore/book/isbn
» There are no fewer isbns than isbns of books

@ /bookstore/*/title O /bookstore/book/title
» There are no fewer title that titles of books

@ book D book[price]
» There are no fewer books than books with prices

Peter Wood (BBK) XML Data Management 189/ 366

Examples of Containment and Equivalence

@ //isbn DO /bookstore/book/isbn
» There are no fewer isbns than isbns of books
@ /bookstore/*/title O /bookstore/book/title
» There are no fewer title that titles of books
@ book D book[price]
» There are no fewer books than books with prices
@ date[year] D date[month] [year]

» There are no fewer dates with years than dates with years and
months

Peter Wood (BBK) XML Data Management 189/ 366

Examples of Containment and Equivalence

@ //isbn DO /bookstore/book/isbn
» There are no fewer isbns than isbns of books
@ /bookstore/*/title O /bookstore/book/title
» There are no fewer title that titles of books
@ book D book[price]
» There are no fewer books than books with prices
@ date[year] D date[month] [year]

» There are no fewer dates with years than dates with years and
months

@ bookstore//title D bookstore//book//title

» There are no fewer bookstores containing titles than bookstores
containing books containing titles

Peter Wood (BBK) XML Data Management 189/ 366

Examples of Containment and Equivalence

@ //isbn DO /bookstore/book/isbn
» There are no fewer isbns than isbns of books
@ /bookstore/*/title O /bookstore/book/title
» There are no fewer title that titles of books
@ book D book[price]
» There are no fewer books than books with prices
@ date[year] D date[month] [year]

» There are no fewer dates with years than dates with years and
months

@ bookstore//title D bookstore//book//title
» There are no fewer bookstores containing titles than bookstores
containing books containing titles
@ magazine[date/year] = magazine[date/year] [date] so [date]
is redundant

Peter Wood (BBK) XML Data Management 189/ 366

Example of Containment (tree patterns)

bookstore bookstore
magazine magazine
/\ S5 /’\
date date title price date title
day month day month

Peter Wood (BBK) XML Data Management

190/ 366

Example of Equivalence (tree patterns)

bookstore bookstore
magazine magazine
/’\ N ’\
title date title date title
N\ N
month day month

Peter Wood (BBK) XML Data Management 191/ 366

Using DTDs

@ We can use DTDs to simplify expressions further

@ Assume we know the document we want to query is valid with
respecttoa DTD D

@ The DTD D specifies certain constraints
@ e.g., every book element must have an isbn element as a child

@ We already know that /bookstore/book D
/bookstore/book[isbn]

@ Using the DTD D, we now know that /bookstore/book is
equivalent to /bookstore/book[isbn], but only when querying
documents valid with respect to D

Peter Wood (BBK) XML Data Management 192/ 366

Constraints implied by a DTD

@ Assume we are given the following DTD D (syntax simplified):

bookstore ((book|magazine)+)

book (author*, title?, isbn, price)

author (first-name?, last-name)

magazine (title, volume?, issue?, date, price)
date ((day?, month)?, year)

Peter Wood (BBK) XML Data Management 193/ 366

Constraints implied by a DTD

@ Assume we are given the following DTD D (syntax simplified):

bookstore ((book|magazine)+)

book (author*, title?, isbn, price)
author (first-name?, last-name)

magazine (title, volume?, issue?, date, price)
date ((day?, month)?, year)

@ Some constraints implied by the DTD D:
» every author element must have a last-name child (child
constraint)
» every date element with a day child must have a month child
(sibling constraint)
» every book element has at most one title child (functional
constraint)

Peter Wood (BBK) XML Data Management 193/ 366

Examples

@ /bookstore/book[price]/author is equivalent to
/bookstore/*/author since

» every book must have a price
» book must be the parent of author

Peter Wood (BBK) XML Data Management 194 / 366

Examples

@ /bookstore/book[price]/author is equivalent to
/bookstore/*/author since

» every book must have a price
» book must be the parent of author
@ bookstore/book[author/first-name] [author/last-name] can
first be rewritten as
bookstore/book [author/first-name] [author] and then as
book [author/first-name]

Peter Wood (BBK) XML Data Management 194 / 366

Containment and Equivalence under DTDs

@ We can use DTD constraints to find more equivalences
@ When given a DTD D and a tree t known to satisfy D
@ Let SAT(D) denote the set of trees satisfying DTD D

@ For XPath queries P and Q,

» P D-contains Q, written P Dsar(py Q, if for all trees t € SAT(D),
P(t) 2 Q(1)

» Pis D-equivalent to Q, written P =gsa7(p) Q, if P Dsar(p) Q and
Q Dsarpy P

Peter Wood (BBK) XML Data Management 195/ 366

Optimising XPath Queries

Example of D-Equivalence (Child Constraint)

@ Every author must have a last-name

book book
[\ “SATO [\
author isbn < author isbn
last-name

Peter Wood (BBK) XML Data Management

196 / 366

Example of D-Equivalence (Sibling Constraint)

@ Every date with a day must have a month

magazine magazine
’\ =S4T '\
date titte < date title
month day

Peter Wood (BBK) XML Data Management

197/ 366

Example of D-Equivalence (Path Constraint)

@ The only path from bookstore to isbn is through book

bookstore
bookstore
2 SAT(D)
book ‘
C
isbn
isbn

Peter Wood (BBK) XML Data Management 198 / 366

D-Equivalence Example (Functional Constraint)

@ Every magazine has a single date

bookstore bookstore
magazine 2 SAT(D) magazine
date title date date title
month day month

Peter Wood (BBK) XML Data Management 199/ 366

Summary

@ We have considered logical optimisation of a fragment of XPath
@ Can be used to delete redundant subexpressions from queries

@ Further redundancies can be found when documents are valid
with respect to a DTD

@ We will consider efficient evaluation of XPath and some general
physical optimisation techniques later

Peter Wood (BBK) XML Data Management 200/ 366

