
XPath

Example using multiple predicates

//performance[conductor][date]

p c s p p s o t d p p c p p

C C C C

L

p p p

Peter Wood (BBK) XML Data Management 162 / 366



XPath

Further examples with predicates

//performance[composer='Frederic Chopin']/composition
returns

1 <composition>Waltzes</composition>
2 <composition>Piano Concerto No. 1</composition>

//CD[@number="449719-2"]//composition returns
1 <composition>Piano Concerto No. 1</composition>
2 <composition>Piano Concerto No. 1</composition>

The two composition nodes have the same value, but they are
different nodes

Peter Wood (BBK) XML Data Management 163 / 366



XPath

Further examples with predicates

//performance[composer='Frederic Chopin']/composition
returns

1 <composition>Waltzes</composition>
2 <composition>Piano Concerto No. 1</composition>

//CD[@number="449719-2"]//composition returns
1 <composition>Piano Concerto No. 1</composition>
2 <composition>Piano Concerto No. 1</composition>

The two composition nodes have the same value, but they are
different nodes

Peter Wood (BBK) XML Data Management 163 / 366



XPath

Functions

XPath provides many functions that may be useful in predicates
Each XPath function takes as input or returns one of these four
types:

I node set
I string
I Boolean
I number

Peter Wood (BBK) XML Data Management 164 / 366



XPath

More about Context

Each location step and predicate is evaluated with respect to a
given context
A specific context is defined as (〈N1,N2, . . .Nm〉,Nc) with

I a context list 〈N1,N2, . . .Nm〉 of nodes in the tree
I a context node Nc belonging to the list

The context length m is the size of the context list
The context node position c ∈ [1,m] gives the position of the
context node in the list

Peter Wood (BBK) XML Data Management 165 / 366



XPath

More about XPath Evaluation

Each step si is interpreted with respect to a context; its result is a
node list
A step si is evaluated with respect to the context of step si−1

More precisely:
I for i = 1 (first step)

if the path is absolute, the context is the root of the XML tree;
else (relative paths) the context is defined by the environment;

I For i > 1
if N = 〈N1,N2, . . .Nm〉 is the result of step si−1,
step si is successively evaluated with respect to the context (N ,Nj),
for each j ∈ [1,m]

The result of the path expression is the node list obtained after
evaluating the last step

Peter Wood (BBK) XML Data Management 166 / 366



XPath

Node-set Functions

Node-set functions operate on or return information about node
sets
Examples:

I position(): returns a number equal to the position of the current
node in the context list

F [position()=i] can be abbreviated as [i]

I last(): returns the size (i.e. the number of nodes in) the context list
I count(set): returns the size of the argument node set
I id(): returns a node set containing all elements in the document

with any of the specified IDs

Peter Wood (BBK) XML Data Management 167 / 366



XPath

Example about context

The expression //CD/performance[2] returns the second
performance of each CD, not the second of all performances
The result of the step CD is the list of the 4 CD nodes
The step performance[2] is evaluated once for each of 4 CD
nodes in the context

Peter Wood (BBK) XML Data Management 168 / 366



XPath

Example about context (2)

The result is the list comprising the second performance element
child of each CD:

1 <performance>

<composition>Fantasias Op. 116</composition>

<date>1976</date>

</performance>
2 <performance>

<composer>Franz Liszt</composer>

<composition>Piano Concerto No. 1</composition>

</performance>
3 <performance>

<composition>American Suite</composition>

<orchestra>Royal Philharmonic</orchestra>

<conductor>Antal Dorati</conductor>

<date>1984</date>

</performance>

Peter Wood (BBK) XML Data Management 169 / 366



XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date

The the following 4 expressions should all be equivalent
I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!

Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions
But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

Peter Wood (BBK) XML Data Management 170 / 366



XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date

The the following 4 expressions should all be equivalent
I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!
Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions

But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

Peter Wood (BBK) XML Data Management 170 / 366



XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date

The the following 4 expressions should all be equivalent
I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!
Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions
But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

Peter Wood (BBK) XML Data Management 170 / 366



XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date

The the following 4 expressions should all be equivalent
I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!
Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions
But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

Peter Wood (BBK) XML Data Management 170 / 366



XPath

More about the position() function

position() is a function that returns the position of the current
node in the context node set
For most axes it counts forward from the context node
For the “backward” axes it counts backwards from the context
node
The “backward” axes are: ancestor, ancestor-or-self, preceding,
and preceding-sibling

Peter Wood (BBK) XML Data Management 171 / 366



XPath

Examples using position()

So, to get the CD immediately before the one that was composed
by Dvorak:
//CD[composer='Antonin Dvorak']/preceding::CD[1]

This selects the third CD
To get the last CD (without having to know how many there are),
use //CD[position()=last()]

Peter Wood (BBK) XML Data Management 172 / 366



XPath

Example using a different axis

//date/following-sibling::* returns the following:
1 <performance>

<composer>Frederic Chopin</composer>

<composition>Piano Concerto No. 1</composition>

</performance>
2 <performance>

<composer>Franz Liszt</composer>

<composition>Piano Concerto No. 1</composition>

</performance>

only one date element in the document has any following siblings

Peter Wood (BBK) XML Data Management 173 / 366



XPath

Examples using count

//CD[count(performance)=2] returns CD elements with exactly
two performance elements as children: the last 3 CDs

//CD[performance][performance] of course does not do this:
I it is equivalent to //CD[performance]
I which returns CD elements with at least one performance child

Peter Wood (BBK) XML Data Management 174 / 366



XPath

Examples using count

//CD[count(performance)=2] returns CD elements with exactly
two performance elements as children: the last 3 CDs
//CD[performance][performance] of course does not do this:

I it is equivalent to //CD[performance]
I which returns CD elements with at least one performance child

Peter Wood (BBK) XML Data Management 174 / 366



XPath

More examples using count

Assume we want the CDs containing only one orchestra element
//CD[count(orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”
This is because we are counting the orchestra children of CD
elements
But orchestras are also represented below performance elements

What about //CD[count(//orchestra)=1]?
I But //orchestra is an absolute expression evaluated at the root
I So the answer to count(//orchestra)is 4, not 1

What we need is /CD[count(.//orchestra)=1], where “.”
represents the current context node

I This gives us the CDs with the “Berlin Philharmonic” and “London
Symphony Orchestra”

Peter Wood (BBK) XML Data Management 175 / 366



XPath

More examples using count

Assume we want the CDs containing only one orchestra element
//CD[count(orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”
This is because we are counting the orchestra children of CD
elements
But orchestras are also represented below performance elements
What about //CD[count(//orchestra)=1]?

I But //orchestra is an absolute expression evaluated at the root
I So the answer to count(//orchestra)is 4, not 1

What we need is /CD[count(.//orchestra)=1], where “.”
represents the current context node

I This gives us the CDs with the “Berlin Philharmonic” and “London
Symphony Orchestra”

Peter Wood (BBK) XML Data Management 175 / 366



XPath

More examples using count

Assume we want the CDs containing only one orchestra element
//CD[count(orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”
This is because we are counting the orchestra children of CD
elements
But orchestras are also represented below performance elements
What about //CD[count(//orchestra)=1]?

I But //orchestra is an absolute expression evaluated at the root
I So the answer to count(//orchestra)is 4, not 1

What we need is /CD[count(.//orchestra)=1], where “.”
represents the current context node

I This gives us the CDs with the “Berlin Philharmonic” and “London
Symphony Orchestra”

Peter Wood (BBK) XML Data Management 175 / 366



XPath

String Functions

String functions include basic string operations
Examples:

I string-length(): returns the length of a string
I concat(): concatenates its arguments in order from left to right and

returns the combined string
I contains(s1, s2): returns true if s2 is a substring of s1
I normalize-space(): strips all leading and trailing whitespace from

its argument

Peter Wood (BBK) XML Data Management 176 / 366



XPath

Boolean Functions

Boolean functions always return a Boolean with the value true or
false:

I true(): simply returns true (makes up for the lack of Boolean
literals in XPath)

I false(): returns false
I not(): inverts its argument (i.e., true becomes false and vice versa)

Examples:
I //performance[orchestra][not(conductor)] returns

performance elements which have an orchestra child but no
conductor child

I //CD[not(.//soloist)] returns CDs containing no soloists

Peter Wood (BBK) XML Data Management 177 / 366



XPath

Boolean Functions

Boolean functions always return a Boolean with the value true or
false:

I true(): simply returns true (makes up for the lack of Boolean
literals in XPath)

I false(): returns false
I not(): inverts its argument (i.e., true becomes false and vice versa)

Examples:
I //performance[orchestra][not(conductor)] returns

performance elements which have an orchestra child but no
conductor child

I //CD[not(.//soloist)] returns CDs containing no soloists

Peter Wood (BBK) XML Data Management 177 / 366



XPath

Boolean Functions (2)

boolean(): converts its argument to a Boolean and returns the
result

I Numbers are false if they are zero or NaN (not a number)
I Node sets are false if they are empty
I Strings are false if they have zero length

Peter Wood (BBK) XML Data Management 178 / 366



XPath

Number Functions

Number functions include a few simple numeric functions
Examples:

I sum(set): converts each node in a node set to a number and
returns the sum of these numbers

I round(), floor(), ceiling(): round numbers to integer values

Peter Wood (BBK) XML Data Management 179 / 366



XPath

Summary

XPath is used to navigate through elements and attributes in an
XML document
XPath is a major element in many W3C standards: XQuery, XSLT,
XLink, XPointer
It is also used to navigate XML trees represented in Java or
JavaScript, e.g.
So an understanding of XPath is fundamental to much advanced
XML usage

Peter Wood (BBK) XML Data Management 180 / 366



Optimising XPath Queries

Chapter 7

Optimising XPath Queries

Peter Wood (BBK) XML Data Management 181 / 366



Optimising XPath Queries

Types of Optimisation

In general, there are two types of query optimisation:
I logical optimisation
I physical optimisation

Logical optimisation is concerned with, e.g., rewriting a given
query to be minimal in size (i.e., to remove redundant parts)
Physical optimisation refers to strategies to make query evaluation
as efficient as possible
In this chapter, we will study some aspects of logical optimisation
for XPath
Later chapters will discuss physical optimisation

Peter Wood (BBK) XML Data Management 182 / 366



Optimising XPath Queries

XPath Fragment

We will consider only a fragment of XPath
Each location step is just

I the name of an element, or
I *, or
I empty (giving rise to //)

optionally followed by predicates

Peter Wood (BBK) XML Data Management 183 / 366



Optimising XPath Queries

<bookstore>

<book>

<author><last-name>Abiteboul</last-name></author>

<author><last-name>Hull</last-name></author>

<author><last-name>Vianu</last-name></author>

<title>Foundations of Databases</title>

<isbn>0-201-53771-0</isbn>

<price>26.95</price>

</book>

<magazine>

<title>The Economist</title>

<date><day>26</day><month>June</month><year>1999</year></date>

<price>2.50</price>

</magazine>

<book>

<isbn>0-934613-40-0</isbn>

<price>34.95</price>

</book>

</bookstore>

Peter Wood (BBK) XML Data Management 184 / 366



Optimising XPath Queries

Some Queries on bookstore

On this specific document
/bookstore/book/isbn gives the same result as //isbn

I because every isbn is a child of book and every book is a child of
bookstore

/bookstore/*/title gives the same result as
/bookstore/(book|magazine)/title and //title

I because the only elements that can be children of bookstore and
parents of title are either book or magazine

//magazine[date[day][month]]/title gives the same result as
//magazine[date/day][date/month]/title

I because each magazine has only a single date

But these queries are not equivalent in general

Peter Wood (BBK) XML Data Management 185 / 366



Optimising XPath Queries

Some Queries on bookstore

On this specific document
/bookstore/book/isbn gives the same result as //isbn

I because every isbn is a child of book and every book is a child of
bookstore

/bookstore/*/title gives the same result as
/bookstore/(book|magazine)/title and //title

I because the only elements that can be children of bookstore and
parents of title are either book or magazine

//magazine[date[day][month]]/title gives the same result as
//magazine[date/day][date/month]/title

I because each magazine has only a single date

But these queries are not equivalent in general

Peter Wood (BBK) XML Data Management 185 / 366



Optimising XPath Queries

XPath Queries as Tree Patterns

We can view an XPath query Q in our fragment as a tree pattern P
Each node test (element name or *) in Q becomes a node in P
If Q has subexpression A/B, then nodes A and B in P are
connected by a single edge
If Q has subexpression A//B, then nodes A and B in P are
connected by a double edge
The node in P corresponding to the element name forming the
output of Q is shown in boldface

Peter Wood (BBK) XML Data Management 186 / 366



Optimising XPath Queries

Tree Pattern Example

/bookstore//*[date/day][date/month]/title

day month

date date title

*

bookstore

��
�
��
�

HH
H
HH

H

Peter Wood (BBK) XML Data Management 187 / 366



Optimising XPath Queries

Containment and Equivalence of XPath Queries

Given an XPath query Q and an XML tree t , the answer of
evaluating Q on t is denoted by Q(t)
For XPath queries P and Q, we say

I P contains Q, written P ⊇ Q, if for all trees t , P(t) ⊇ Q(t)
I P is equivalent to Q, written P ≡ Q, if P ⊇ Q and Q ⊇ P

Containment of XPath queries is useful
I to show equivalence of queries for optimization
I to determine if views can be used in query processing
I to reuse cached query results

Peter Wood (BBK) XML Data Management 188 / 366



Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months
bookstore//title ⊇ bookstore//book//title

I There are no fewer bookstores containing titles than bookstores
containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 366



Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months
bookstore//title ⊇ bookstore//book//title

I There are no fewer bookstores containing titles than bookstores
containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 366



Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months
bookstore//title ⊇ bookstore//book//title

I There are no fewer bookstores containing titles than bookstores
containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 366



Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months

bookstore//title ⊇ bookstore//book//title
I There are no fewer bookstores containing titles than bookstores

containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 366



Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months
bookstore//title ⊇ bookstore//book//title

I There are no fewer bookstores containing titles than bookstores
containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 366



Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months
bookstore//title ⊇ bookstore//book//title

I There are no fewer bookstores containing titles than bookstores
containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 366



Optimising XPath Queries

Example of Containment (tree patterns)

day month

date date title

magazine

bookstore

�
��

�
��

H
HH

H
HH

⊇

day month

price date title

magazine

bookstore

�
�
�

@
@
@

�
��

�
��

H
HH

H
HH

Peter Wood (BBK) XML Data Management 190 / 366



Optimising XPath Queries

Example of Equivalence (tree patterns)

day month

title date title

magazine

bookstore

�
�
�

@
@
@

�
��
�
��

H
HH

H
HH

≡

day month

date title

magazine

bookstore

�
�
�

@
@
@

H
HH

H
HH

Peter Wood (BBK) XML Data Management 191 / 366



Optimising XPath Queries

Using DTDs

We can use DTDs to simplify expressions further
Assume we know the document we want to query is valid with
respect to a DTD D
The DTD D specifies certain constraints
e.g., every book element must have an isbn element as a child
We already know that /bookstore/book ⊇
/bookstore/book[isbn]

Using the DTD D, we now know that /bookstore/book is
equivalent to /bookstore/book[isbn], but only when querying
documents valid with respect to D

Peter Wood (BBK) XML Data Management 192 / 366



Optimising XPath Queries

Constraints implied by a DTD

Assume we are given the following DTD D (syntax simplified):
bookstore ((book|magazine)+)

book (author*, title?, isbn, price)

author (first-name?, last-name)

magazine (title, volume?, issue?, date, price)

date ((day?, month)?, year)

Some constraints implied by the DTD D:
I every author element must have a last-name child (child

constraint)
I every date element with a day child must have a month child

(sibling constraint)
I every book element has at most one title child (functional

constraint)

Peter Wood (BBK) XML Data Management 193 / 366



Optimising XPath Queries

Constraints implied by a DTD

Assume we are given the following DTD D (syntax simplified):
bookstore ((book|magazine)+)

book (author*, title?, isbn, price)

author (first-name?, last-name)

magazine (title, volume?, issue?, date, price)

date ((day?, month)?, year)

Some constraints implied by the DTD D:
I every author element must have a last-name child (child

constraint)
I every date element with a day child must have a month child

(sibling constraint)
I every book element has at most one title child (functional

constraint)

Peter Wood (BBK) XML Data Management 193 / 366



Optimising XPath Queries

Examples

/bookstore/book[price]/author is equivalent to
/bookstore/*/author since

I every book must have a price
I book must be the parent of author

bookstore/book[author/first-name][author/last-name] can
first be rewritten as
bookstore/book[author/first-name][author] and then as
book[author/first-name]

Peter Wood (BBK) XML Data Management 194 / 366



Optimising XPath Queries

Examples

/bookstore/book[price]/author is equivalent to
/bookstore/*/author since

I every book must have a price
I book must be the parent of author

bookstore/book[author/first-name][author/last-name] can
first be rewritten as
bookstore/book[author/first-name][author] and then as
book[author/first-name]

Peter Wood (BBK) XML Data Management 194 / 366



Optimising XPath Queries

Containment and Equivalence under DTDs

We can use DTD constraints to find more equivalences
When given a DTD D and a tree t known to satisfy D
Let SAT (D) denote the set of trees satisfying DTD D
For XPath queries P and Q,

I P D-contains Q, written P ⊇SAT (D) Q, if for all trees t ∈ SAT (D),
P(t) ⊇ Q(t)

I P is D-equivalent to Q, written P ≡SAT (D) Q, if P ⊇SAT (D) Q and
Q ⊇SAT (D) P

Peter Wood (BBK) XML Data Management 195 / 366



Optimising XPath Queries

Example of D-Equivalence (Child Constraint)

Every author must have a last-name

last-name

author isbn

book

HH
HH

HH

⊆

⊇SAT (D)

author isbn

book

HH
HH

HH

Peter Wood (BBK) XML Data Management 196 / 366



Optimising XPath Queries

Example of D-Equivalence (Sibling Constraint)

Every date with a day must have a month

day month

date title

magazine

�
�
�

@
@
@

HH
H
HH

H

⊆

⊇SAT (D)

day

date title

magazine

HH
H

HH
H

Peter Wood (BBK) XML Data Management 197 / 366



Optimising XPath Queries

Example of D-Equivalence (Path Constraint)

The only path from bookstore to isbn is through book

isbn

book

bookstore

⊇SAT (D)

⊆
isbn

bookstore

Peter Wood (BBK) XML Data Management 198 / 366



Optimising XPath Queries

D-Equivalence Example (Functional Constraint)

Every magazine has a single date

day month

date title

magazine

bookstore

�
�
�

@
@
@

HH
HH

HH
⊇SAT (D)

⊆

day month

date date title

magazine

bookstore

��
��

��

HH
HH

HH

Peter Wood (BBK) XML Data Management 199 / 366



Optimising XPath Queries

Summary

We have considered logical optimisation of a fragment of XPath
Can be used to delete redundant subexpressions from queries
Further redundancies can be found when documents are valid
with respect to a DTD
We will consider efficient evaluation of XPath and some general
physical optimisation techniques later

Peter Wood (BBK) XML Data Management 200 / 366


